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HARMONIC UNIVALENT FUNCTIONS WITH VARYING ARGUMENTS
DEFINED BY USING SALAGEAN INTEGRAL OPERATOR

R.M. EL-ASHWAH1, M.K. AOUF2, A.A.M. HASSAN3, A.H. HASSAN3

Abstract. In this paper we define and investigate a new class of harmonic functions defined

by using Salagean integral operator with varying arguments. We obtain coefficient inequalities,

extreme points and distortion bounds.
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1. Introduction

A continuous complex-valued function f = u + iv which is defined in a simply-connected
complex domain D is said to be harmonic in D if both u and v are real harmonic in D. In any
simply-connected domain we can write

f = h + g, (1)

where h and g are analytic in D. We call h the analytic part and g the co-analytic part of f . A
necessary and sufficient condition for f to be locally univalent and sense-preserving in D is that
|h′(z)| > |g′(z)|, z ∈ D (see [3]).

Denote by SH the class of functions f of the form (1) that are harmonic univalent and sense-
preserving in the unit disc U = {z ∈ C : |z| < 1} for which f(0) = h(0) = f

′
z(0) − 1 = 0. Then

for f = h + g ∈ SH we may express the analytic functions h and g as

h(z) = z +
∞∑

k=2

akz
k, g(z) =

∞∑

k=1

bkz
k, |b1| < 1. (2)

In 1984 Clunie and Shell-Small [3] investigated the class SH as well as its geometric subclasses
and obtained some coefficient bounds. Since then, there have been several related papers on SH

and its subclasses.
Salagean integral operator In is defined as follows (see [8])

(i) I0f(z) = f(z);

(ii) I1f(z) = If(z) =
z∫
0

f(t)t−1dt;
..................................................

(iii) Inf(z) = I(In−1f(z)) (n ∈ N = {1, 2, 3, ...}).
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In [4], Cotirla defined Salagean integral operator for harmonic univalent functions f(z) such
that h(z) and g(z) are given by (2) as follows

Inf(z) = Inh(z) + (−1)nIng(z), (3)

where

Inh(z) = z +
∞∑

k=2

k−nakz
k and Ing(z) =

∞∑

k=1

k−nbkz
k.

With the help of the modified Salagean integral operator we let EH(m,n; γ, ρ) be the family of
harmonic functions f = h + g, which satisfy the following condition [6]

Re

{(
1 + ρeiα

) Inf(z)
Imf(z)

− ρeiα

}
≥ γ (4)

(α ∈ R, 0 ≤ γ < 1, ρ ≥ 0, m ∈ N, n ∈ N0 = N ∪ {0} ,m > n, and z ∈ U) ,

where Inf is defined by (3), we note that
(i) Taking α = 0, EH (n + 1, n; 2β − 1, 1) = H (n, β) (0 ≤ β < 1) (see Cotirla [4]).
(ii) Taking m = n + q, EH (n + q, n; γ, ρ) = Hρ,q (n, γ) (q ∈ N) (see Guney and Sakar [5]).

Also we note that, by the special choices of α, γ, ρ, m and n, we obtain the following special
cases

(i) Taking α = 0, then EH(m,n, 2β − 1, 1) = H (m, n; β) =
{

f ∈ SH :

Re

{
Inf(z)
Imf(z)

}
> β (0 ≤ β < 1;m ∈ N; n ∈ N0; m > n; z ∈ U)

}
;

(ii) EH(n + 1, n; γ, ρ) = EH (n; γ, ρ) =
{

f ∈ SH : Re

{(
1 + ρeiα

) Inf(z)
In+1f(z)

−

−ρeiα
}
≥ γ (α ∈ R; 0 ≤ γ < 1; ρ ≥ 0;n ∈ N0; z ∈ U)

}
;

(iii) EH(1, 0; γ, ρ) = EH (γ, ρ)=
{

f ∈ SH : Re

{(
1+ρeiα

) f(z)
If(z)

−ρeiα

}
≥γ

(α ∈ R; 0 ≤ γ < 1; ρ ≥ 0; z ∈ U)
}

.

Also we define the subclass VH(m,n; γ, ρ) consists of harmonic functions fn = h + gn in
EH(m, n; γ, ρ) such that h and gn are the form

h(z) = z +
∞∑

k=2

akz
k, gn(z) =

∞∑

k=1

bkz
k (5)

and there exists a real number φ such that, mod 2π,

arg(ak) + (k − 1)φ ≡ π, k ≥ 2 and arg(bk) + (k + 1)φ ≡ (n− 1)π, k ≥ 1. (6)

Also we note that, by the special choices of α, γ, m and n, we obtain:
(i)Taking α = 0, VH (n + 1, n; 2β − 1, 1) = VH (n, β) ;
(ii) Taking α = 0, VH(m,n, 2β − 1, 1) = VH (m,n;β) ;
(iii) VH(n + 1, n; γ, ρ) = VH (n; γ, ρ) ;
(iv) VH(1, 0; γ, ρ) = VH (γ, ρ).
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2. Main results

Unless otherwise mentioned, we assume in the reminder of this paper that, α ∈ R, 0 ≤ γ < 1,

ρ ≥ 0, m ∈ N, n ∈ N0, m > n and z ∈ U. We begin with a sufficient coefficient condition for
functions in the class EH(m,n; γ, ρ).

Theorem 2.1. Let f = h + g be such that h and g are given by (2). Furthermore,
∞∑

k=1

[
(1+ρ)k−n−(γ+ρ)k−m

1−γ |ak|+ (1+ρ)k−n−(−1)m−n(γ+ρ)k−m

1−γ |bk|
]
≤ 2, (7)

where a1 = 1. Then f ∈ EH(m, n; γ, ρ).

Proof. We need to show that if (7) holds then the condition (4) is satisfied, then we want to
prove that

Re

{(
1 + ρeiα

)
Inf(z)− ρeiαImf(z)

Imf(z)

}
= Re

A(z)
B(z)

≥ γ. (8)

Using the fact that Re {w} > γ if and only if |1− γ + w| > |1 + γ − w|, it suffices to show that

|A(z) + (1− γ)B(z)| − |A(z)− (1 + γ)B(z)| ≥ 0, (9)

where A(z) =
(
1 + ρeiα

)
Inf(z) − ρeiαImf(z) and B(z) = Imf(z). Substituting for A(z) and

B(z) in the left side of (9) we obtain
∣∣∣
(
1+ρeiα

)
Inf(z)− ρeiαImf(z) + (1−γ) Imf(z)

∣∣∣−

−
∣∣∣
(
1+ρeiα

)
Inf(z)− ρeiαImf(z)− (1 + γ)Imf(z)

∣∣∣ =

=

∣∣∣∣∣(2−γ) z+
∞∑

k=2

[(
(1 + ρeiα)k−n+

(
1−γ − ρeiα

)
k−m

)]
akz

k+

+(−1)n
∞∑

k=1

[
(1 + ρeiα)k−n−(−1)m−n (

ρeiα + γ − 1
)
k−m

]×

×bkzk
∣∣∣−

∣∣∣∣∣γz−
∞∑

k=2

[
(1 + ρeiα)k−n− (

1+γ + ρeiα
)
k−m

]
akz

k−

− (−1)n
∞∑

k=1

[
(1 + ρeiα)k−n−(−1)m−n (

1+γ + ρeiα
)
k−m

]
bkzk

∣∣∣∣∣ ≥

≥ 2 (1− γ) |z| − 2
∞∑

k=2

[
(1 + ρ)k−n − (γ + ρ)k−m

] |ak| |z|k −

−2
∞∑

k=1

[
(1 + ρ)k−n − (−1)m−n (γ + ρ)k−m

] |bk| |z|k ≥

≥ 2 (1− γ) |z|
{

1−
∞∑

k=2

(1 + ρ)k−n − (γ + ρ)k−m

1− γ
|ak| |z|k−1 −

−
∞∑

k=1

(1 + ρ)k−n − (−1)m−n (γ + ρ)k−m

1− γ
|bk| |z|k−1

}
.

By using (7), then the last expression is non-negative, then (9) is satisfied.
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The harmonic function

f(z) = z +
∞∑

k=2

1−γ
(1+ρ)k−n−(γ+ρ)k−m xkz

k +
∞∑

k=1

1−γ

(1+ρ)k−n−(−1)m−n(γ+ρ)k−m ykzk, (10)

where
∞∑

k=2

|xk|+
∞∑

k=1

|yk| = 1, shows that the coefficient bound given by (7) is sharp. ¤

In the following theorem, it is shown that the condition (7) is also necessary for function
fn = h + gn , where h and gn are of the form (5).

Theorem 2.2. Let fn = h + gn, where h and gn are given by (5). Then fn ∈ VH(m,n; γ, ρ), if
and only if the coefficient condition (7) holds.

Proof. Since VH(m,n; γ, ρ) ⊆ EH(m,n; γ, ρ), we only need to prove the “only if” part of the
theorem. For functions fn = h + gn, where h and gn are given by (5), the inequality (4) with
f = fn is equivalent to

Re





(1 + ρeiα)[z +
∞∑

k=2

k−nakz
k + (−1)n

∞∑
k=1

k−nbkz
k]

z +
∞∑

k=2

k−makzk + (−1)m
∞∑

k=1

k−mbkz
k




−

−Re





(γ + ρeiα)[z +
∞∑

k=2

k−makz
k + (−1)m

∞∑
k=1

k−mbkz
k]

z +
∞∑

k=2

k−makzk + (−1)m
∞∑

k=1

k−mbkz
k





> 0.

The above condition holds for all values of α ∈ R and z ∈ U . Upon choosing φ according (6)
and substituting α = 0 and z = reiφ(0 < r < 1), we must have

E

1−
[ ∞∑

k=2

k−m |ak| − (−1)m+n−1
∞∑

k=1

k−m |bk|
]

rk−1

> 0, (11)

where

E = (1− γ)−
( ∞∑

k=2

[
(1 + ρ)k−n − (γ + ρ) k−m

] |ak|
)

rk−1 −

−
( ∞∑

k=1

[
(1 + ρ)k−n − (−1)m−n (γ + ρ) k−m

] |bk|
)

rk−1.

If the inequality (7) does not hold, then E is negative for r sufficiently close to 1. Thus there
exists z0 = r0 in (0, 1) for which the quotient in (11) is negative. But this is a contradiction, the
proof of Theorem 2 is completed. ¤

We now obtain the distortion bounds for functions in VH(m,n; γ, ρ).

Theorem 2.3. Let fn = h+ gn, where h and gn are given by (5) and fn ∈ VH(m,n; γ, ρ). Then
for |z| = r < 1, we have

|fn(z)| ≤ (1 + |b1|) r +
[

1−γ
(1+ρ)2−n−(γ+ρ)2−m − (1+ρ)−(−1)m−n(γ+ρ)

(1+ρ)2−n−(γ+ρ)2−m |b1|
]
r2 (12)

and
|fn(z)| ≥ (1 + |b1|) r −

[
1−γ

(1+ρ)2−n−(γ+ρ)2−m − (1+ρ)−(−1)m−n(γ+ρ)
(1+ρ)2−n−(γ+ρ)2−m |b1|

]
r2. (13)
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Proof. We prove the first inequality.
Let fn ∈ VH(m,n; γ, ρ), we have

|fn(z)| ≤ (1+ |b1|) r+
∞∑

k=2

(|ak|+ |bk|) rk≤ (1 + |b1|) r +
∞∑

k=2

(|ak|+ |bk|) r2 ≤

≤ (1+ |b1|) r+ 1−γ
(1+ρ)2−n−(γ+ρ)2−m

∞∑

k=2

(1+ρ)2−n−(γ+ρ)2−m

1−γ (|ak|+ |bk|) r2 ≤

≤ (1 + |b1|) r + 1−γ
(1+ρ)2−n−(γ+ρ)2−m ×

×
∞∑

k=2

[
(1+ρ)k−n−(γ+ρ)k−m

1−γ |ak|+ (1+ρ)k−n−(−1)m−n(γ+ρ)k−m

1−γ |bk|
]
r2 ≤

≤ (1 + |b1|) r + 1−γ
(1+ρ)2−n−(γ+ρ)2−m

[
1− (1+ρ)−(−1)m−n(γ+ρ)

1−γ |b1|
]
r2 ≤

≤ (1 + |b1|) r +
[

1−γ
(1+ρ)2−n−2−m(γ+ρ)

− (1+ρ)−(−1)m−n(γ+ρ)
(1+ρ)2−n−2−m(γ+ρ)

|b1|
]
r2.

The proof of the second inequality is similar, thus it is left. ¤

The bounds given in Theorem 3 for functions fn = h + gn such that h and gn are given by (6)
also hold for functions f = h + g such that h and g are given by (2) if the coefficient condition
(7) is satisfied.
Using the same technique used earlier by Aghalary [1] we introduce the extreme points of the
class VH(m, n; γ, ρ).

Theorem 2.4. The closed convex hull of the class VH(m,n; γ, ρ) (denoted by clcoVH(m,n; γ, ρ))
is {

f(z) = z +
∞∑

k=2

akz
k +

∞∑

k=1

bkzk ∈ EH(m,n; γ, ρ) :

∞∑

k=1

[
(1+ρ)k−n−(γ+ρ)k−m

1−γ |ak|+ (1+ρ)k−n−(−1)m−n(γ+ρ)k−m

1−γ |bk|
]
≤ 2

}
,

where a1=1. Set λk=
1−γ

(1+ρ)k−n−(γ+ρ)k−m and µk=
1−γ

(1+ρ)k−n−(−1)m−n(γ+ρ)k−m
.

For b1 fixed, |b1| ≤ 1−γ
(1+ρ)−(−1)m−n(γ+ρ)

, the extreme points of the class VH(m,n; γ, ρ) are
{

z + λkxzk + b1z
}
∪

{
z + µkxzk + b1z

}
, (14)

where k ≥ 2 and |x| = 1− (1+ρ)−(−1)m−n(γ+ρ)
1−γ .

Proof. Any function f ∈ VH(m,n; γ, ρ) may be expressed as

f(z) = z +
∞∑

k=2

|ak| eiβkzk + b1z +
∞∑

k=2

|bk| eiδkzk,

where the coefficients satisfy the inequality (7). Set

h1(z)=z, g1(z)=b1z, hk(z)=z+λke
iβkzk, gk(z)=b1z+µke

iδkzk, k=2, 3, ... .

Writing Xk = |ak|
λk

, Yk = |bk|
µk

, k = 2, 3, ... and X1 = 1−
∞∑

k=2

Xk, Y1 = 1−
∞∑

k=2

Yk, we have

f(z) =
∞∑

k=1

(
Xkhk(z) + Ykgk(z)

)
.
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In particular, setting f1(z) = z + b1z and fk(z) = z + λkxzk + b1z + µkyzk,
(

k ≥ 2, |x|+ |y| = 1− (1 + ρ)− (−1)m−n (γ + ρ)
1− γ

|b1|
)

,

we see that extreme points of the class VH(m, n; γ, ρ) are contained in {fk(z)}. To see that f1(z)
is not an extreme point, note that f1(z) may be written as

f1(z) =
1
2

{
f1(z) + λ

(
1− (1 + ρ)k−n − (−1)m−n (γ + ρ) k−m

1− γ
|b1|

)
z2

}
+

+
1
2

{
f1(z)− λ

(
1− (1 + ρ)k−n − (−1)m−n (γ + ρ) k−m

1− γ
|b1|

)
z2

}
,

a convex linear combination of functions in the class VH(m,n; γ, ρ). Next we will show if both
|x| 6= 0 and |y| 6= 0, then fk is not an extreme point.

Without loss of generality, assume |x| ≥ |y|. Choose ε > 0 small enough so that ε < |x|
|y| . Set

A = 1 + ε and B = 1−
∣∣∣ εx

y

∣∣∣ , we then see that both

t1(z) = z + λkxAzk + b1z + µkyBzk

and
t2(z) = z + λkx (2−A) zk + b1z + µky (2−B) zk,

are in the class VH(m,n; γ, ρ) and note that

fk(z) =
1
2

(t1(z) + t2(z)) .

The extremal coefficient bounds shows that functions of the form (14) are the extreme points
for the class VH(m,n; γ, ρ), then the proof of Theorem 4 is completed. ¤

Now we will examine the closure properties of the class VH(m,n; γ, ρ) under the generalized
Bernardi-Libera-Livingston integral operator (see [2, 7]) Lc(f) which is defined by

Lc(f (z)) =
c + 1
zc

z∫

0

tc−1f (t) dt (c > −1). (15)

Theorem 2.5. Let fn = h + gn ∈ VH(m,n; γ, ρ), where h and gn are given by (5). Then
Lc(fn(z)) belongs to the class VH(m,n; γ, ρ).

Proof. From the representation of Lc(fn(z)), it follows that

Lc(fn(z)) =
c + 1
zc

z∫

0

tc−1 (h (t) + gn(t)) dt =

=
c + 1
zc

z∫

0

tc−1

{
t +

∞∑

k=2

akt
k +

∞∑

k=1

bktk

}
dt =

= z +
∞∑

k=2

Akz
k +

∞∑

k=1

Bkzk,

where Ak = c+1
c+kak, Bk = c+1

c+k bk. Therefore, we have,
∞∑

k=1

[
(1+ρ)k−n−(γ+ρ)k−m

1−γ

c + 1
c + k

|ak|+ (1+ρ)k−n−(−1)m−n(γ+ρ)k−m

1−γ

c + 1
c + k

|bk|
]
≤
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≤
∞∑

k=1

[
(1+ρ)k−n−(γ+ρ)k−m

1−γ |ak|+ (1+ρ)k−n−(−1)m−n(γ+ρ)k−m

1−γ |bk|
]
≤ 2,

and the proof of Theorem 5 is completed. ¤
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